
Squash: Design and Implementation of a

Large Scale HTTP Gateway and Masquerader

Behdad Esfahbod Hossein Safy Allah
behdad@behdad.org hossein@bamdad.org

Computing Center
Sharif University of Technology

July 4, 2003

Abstract

Paying for information on the web is a usual scenario these
days. There would not be much problem if each user is
going to pay for her own needed information, but most
of the times, organizations are going to pay for informa-
tion needed by they users. These organization themselves
may charge the higher academic body for the what they
spent in the process. Setting access rights and accounting
for each single user’s access to each information database
consumes a huge amount of time and human resources.
In this paper we focus on the solution we have designed
and implemented to overcome the problem, by setting up
a central access point that both users and information
databases would interact with. After discussing the design
and its benefits, we focus on the implementation practice
we have done, the base components used, and scalabil-
ity issues, and finally propose some of the ways that the
system can be developed to overcome the current limita-
tions.

1 Introduction

The growth of Internet and the web technologies in the
recent years, has affected many different aspects of today’s
people life. From regular mail, newspapers, magazines,
television, radio, and telephone, to shopping, computer
games, and business, all have reformed to make proper
use of the Internet. Among them, what has affected the
academic environments, is the great pool of information
and knowledge shared by people all over the world, and
available through the wires connecting them to the cloudy
network.

Information available on the net can be divided in two
main categories. The first category is those information
distributed among different websites and servers that most
of them can be reached with modern rich search engines
in a minute or two. The second category is the informa-
tion gathered in central information databases (infobases)
which contain a huge amount of information in a wide
variety of topics and age, and available and searchable

through the website representing the infobase. Infobases
usually contain the latest technology and information on
topics they cover, by providing up to date research pa-
pers, journals, and conference proceedings. These are the
essentials that an academic environment should be fed to
keep itself updated and produce new science. The number
of infobases is greatly limited comparing to the providers
of the first category. Moreover, the infobases that a small
environment may be interested in are usually limited to a
few.

2 Problem Definition

In the common experience of using infobases, there are a
few infobases, lets say up to a hundred ones, and a greater
number of users that want to use the infobases. Here we
contrast on the users from a geographical region, e.g. a
country. Each user is a member of some academic envi-
ronment that may be a university, a research laboratory,
or another kind of department. We call the users of each
of these environments a group. The process of requesting
and receiving information is mostly done on top of the
common web technology named the Hyper Text Transfer
Protocol (HTTP).

Infobases sell information to the user on a per request
basis, or to larger groups, based on the number of needed
resources (articles). The later is the preferred way for the
infobases, and will break the price many times!

Authentication is done in one of two ways, or both of
them: username/password and IP-based.

The traditional way of acquiring information from in-
fobases is shown in Figure 1, that each user sends a request
for what she needs to the infobase, and the infobase re-
sponses with the requested information. There may be
three different scenarios:

1. Each user buys her own information. Usually there
is no need for authentication, as she enters payment
information each time she buys some document.

2. Each group pays for a large number of documents,
and then allows its users to get what they need. Au-

1

Figure 1: Traditional way of acquiring information from
infobases

thentication is needed, to allow users from the group,
and deny others, from using group’s resources. The
group should ask each infobase to set up some IPs
and/or username/passwords, for users of the group.

3. The whole region pays for a larger number of docu-
ments, and then the groups are allowed to use their
quota. This way a single entity communicates with
the infobases, but the same entity should communi-
cate with groups, to gather each group’s IP addresses
and username/password pairs, and send them all to
the infobases.

The main problems with these methods are:

• Users must authenticate on each infobase separately,
in case of username/password authentication.

• In case of group or region registration, many users
should share a single password, as infobases do not
register many username/password pairs for a single
customer. Sharing passwords, means that a pass-
word leak is quite probable, and then the password
for many users would change, and users should be
notified of the new password.

• Same document may be bought several times by dif-
ferent users of the same, or different groups.

• There is a trade-off between the number of doc-
uments a customer pays, and the price of a sin-
gle document. The difference in price not ignor-
able in any sense, as a single document for an un-
registered user may cost around $30, but the same
document, when accessed via a registered region of
around 100 groups, will cost as low as $2! On the
other hand, when the number of users that a cus-
tomer has, grows, it may take up to months that
the single users or groups, report their username and

Figure 2: Proposed way of acquiring information from in-
fobases

passwords pairs, and IP addresses, and the customer
reports them to each infobases, and the infobases put
them in effect. This delay can consume some months
of a twelve month membership period.

3 Our Solution

To overcome the problems mentioned, we have designed a
central system as a access-point and gateway for users of
the whole region to access to the infobases. This method
is shown schematically in Figure 2.

Some characteristics of the system, not shown in the
figure are listed below:

• Squash hides the real user from the infobase. In-
fobases just see the Squash system requesting docu-
ments.

• Users authenticate on the Squash system.

• Squash is responsible for authentication on the in-
fobases.

• Squash manages users’ permissions, and does the ac-
counting.

• Squash manages a cache.

• Squash’s configuration is done via web, and each user
or group administrator, can configure her settings
online. The configurations take effect in a few hours.

There are many ways the groups and the users benefit
from this design, most important ones are:

2

Figure 3: Internal components of the Squash system

• Users need to authenticate once on the Squash sys-
tem, from then, they can access all infobases they
are allowed, without any authentication.

• The cost of a document is minimized, as the whole
region is registering as a single customer.

• The delay is minimized, as the user side configura-
tion is done via web by each user herself, or group
administrator. The infobase side is also done very
fast, as a single username/password, or IP address
suffices.

• An efficient cache can be set up to reduce the total
cost. As all the traffic is coming from a few number
of infobases, caching can be efficient.

• The region can set up a fast Internet connection to
the infobases, and users and groups can benefit from
fast local backbones connecting them to the Squash
system.

4 Implementation

The Squash system is implemented on a personal com-
puter using the RedHat Linux operating system. A pow-
erful PC with a tailored version of the servers can handle
thousands of request a second. The internal components of
Squash are briefly described in this section, and schemat-
ically shown in Figure 3.

4.1 Apache HTTP Server with PHP

PHP is used as the web programming language. The web
application is responsible authenticating users for config-
uration purposes, and also as a portal to the infobases.
The system administrator, group administrator, and end
users, can login and set their configuration here. The en-
try point of the site is served as HTTP, it then identifies
the user from her IP address, or otherwise, redirects her
to the HTTPS secure pages to login.

4.2 XPage Database Oriented Web Appli-
cation Design System

The XPage system by Mohammad Reza Mahjourian is tai-
lored to suite our needs. XPage is used to design the web
user interface. XPage is a tool to generate web pages from
XML meta definitions.

4.3 PostgreSQL Relational Database

The database server is used to store login information,
access permissions, and accounting data. The web appli-
cation is responsible for viewing, editing, and deleting this
data. PostgreSQL is used as it has native Unicode support
which is needed for Persian computing.

4.4 Squid HTTP Proxy Server

Squid is the engine of the Squash system, and the rea-
son it is named so. Here Squid is set up as HTTP proxy,
cache, authenticator, and anonymizer. User just set her
browser’s proxy setting to point to this Squid, also enters
the username and password, if any. After that, Squid gets
the request from user, hides the user from the request,
checks that the user has permission to the requested in-
fobase by looking up the username/password in the Post-
greSQL database, if yes, redirects the request to the in-
fobase, gets the response, and send it to the user, and
logging the transaction. As a cache, Squid may respond
to the user from cached data, instead of requesting from
the infobase.

4.5 Webalizer HTTP Log Monitor

Webalizer is set up to monitor the log file from Squid, and
create reports on usage information of different databases,
in different hours and days, and from different regions.

4.6 RRDTool Round-Robin Database

Round-robin databases are built for each user accessing to
each infobase, later RRDTool can draw usage graphs for
past twenty-four hours, or past six months for a user, a
group, or the whole system, accessing an specific infobase,
or total usage.

3

4.7 Accounting Module

This module, written in C++ for efficiency matters, reads
the log file from Squid, sums up each user’s usage and
imports this data in PostgreSQL and RRDTool databases.
The Cron daemon is responsible for running the module
every five minutes. Million lines of log file can be processed
in a few seconds.

4.8 Configuration Generation Module

Last, but not the least, is the configuration generation
module, written with PHP, extracts the access permission
settings from the PostgreSQL database, and builds access
lists and rules for the Squid server. Finally, Squid is re-
quested to reread its configuration file, for the settings to
take effect. The Cron daemon is responsible for running
this module once a night.

5 Scalability

When planning to redirect the load from many academic
environments from one single gateway, the main problem
that sooner or later we should solve is scalability. Al-
though the narrow bandwidth of the connections in Iran
seems to be the bottle-neck of such a system, the perfor-
mance of the proxy server may become the problem soon.

Three components can be affected by very high load:
Apache, PostgreSQL, and Squid. To overcome the prob-
lem, each of them can be served on its own powerful server.
PostgreSQL cannot be installed on a distributed environ-
ment easily, so using a more powerful machine (with more
RAM) is recommended. Apache and Squid can be in-
stalled on several machines, and a load balancer would
redirect requests to the least busy machine on demand.
This schema solves the problem of scalability completely.

Another break-point is that when the access permis-
sion tables become very large, the Squid server may be-
come slow, as it should check every single request, with a
list of access definitions. The rule of the thumb is that a
few thousands of access lists is okay, but more than that
can cause a real problem. The problem rises from the fact
that Squid’s access model is not designed for extensive
user-based permission handling. A solution that solves
the problem efficiently is to implement an standalone au-
thorization module as a firewall. Requests are redirected
to the firewall, which after authorizing the access, trans-
parently redirects the request to the Squid server.

6 Conclusion

We first described the problem of many users wanting
to acquire information from some information databases.
Then we focused on the traditional ways of doing so, and
discussed the most important problems with these meth-
ods. After that we presented our design for a central

gateway to the infobases, and described how it can re-
duce the effort and cost of accessing to infobases greatly.
In a country-wide scale, this difference in net cost means
many more informative documents can be pushed into the
academy, that hopefully results in greater research to be
done.

We then showed that how the designed system is im-
plemented using cheap hardware and Free Software sys-
tems. Because of using many powerful and publicly avail-
able components, the source code for the whole project
is very small, resulting in very low implementation and
maintenance costs. Finally, the scalability of the system
is discussed.

Acknowledgement

We wish to thank all the people that helped us in the
design and implementation phases, specially Behnam Es-
fahbod, Mohammad Reza Mahjourian, and Hamid Naz-
erzadeh.

References

Most references used in this project have been the users
and programmers manual of the used components, means
Apache, PHP, XPage, PostgreSQL, Squid, Webalizer, and
RRDTool manuals that all are available on the Internet,
and shipped with common Linux distributions. Some valu-
able books have been used in the implementation phase:

Tanenbaum, Andrew S., Computer Networks, 3rd ed, Pren-
tice Hall, 1996.

Matthew, Neil and Richard Stones, Beginning Linux Pro-
gramming, Wrox Press, 1999.

Matthew, Neil, Richard Stones et al, Professional Linux
Programming, Wrox Press, 2000.

Mourani, Gerhard, Securing and Optimizing Linux: Red-
Hat Edition, OpenDocs Publishing, 2000.

4

